Поверхностный интеграл - определение. Что такое Поверхностный интеграл
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Поверхностный интеграл - определение

Поверхностный интеграл; Поверхностный интеграл первого рода; Поверхностный интеграл второго рода; ∯
Найдено результатов: 71
Поверхностный интеграл         

интеграл от функции, заданной на какой-либо поверхности. К П. и. приводит, например, задача вычисления массы, распределённой по поверхности S с переменной поверхностной плотностью f (M). Для этого разбивают поверхность на части s1, s2,..., sn и выбирают в каждой из них по точке Mi. Если эти части достаточно малы, то их массы приближённо равны f (Mi) si, а масса всей поверхности будет равна . Это значение тем ближе к точному, чем меньше части si. Поэтому точное значение массы поверхности есть

,

где предел берётся при условии, что размеры всех частей si (и их площади) стремятся к нулю. К аналогичным пределам приводят и другие задачи физики. Эти пределы называют П. и. первого рода от функции f (M) по поверхности S и обозначают

.

Их вычисление приводится к вычислению двойных интегралов (см. Кратный интеграл).

В некоторых задачах физики, например при определении потока жидкости через поверхность S, встречаются пределы аналогичных сумм с той лишь разницей, что вместо площадей самих частей стоят площади их проекций на три координатные плоскости. При этом поверхность S предполагается ориентированной (т. е. указано, какое из направлений нормалей считается положительным) и площадь проекции берётся со знаком + или - в зависимости от того, является ли угол между положительным направлением нормали и осью, перпендикулярной плоскости проекций, острым или тупым. Пределы сумм такого вида называют П. и. второго рода (или П. и. по проекциям) и обозначают

.

В отличие от П. и. первого рода, знак П. и. второго рода зависит от ориентации поверхности S.

М. В. Остроградский установил важную формулу, связывающую П. и. второго рода по замкнутой поверхности S с тройным интегралом по ограниченному ею объёму V (см. Остроградского формула). Из этой формулы следует, что если функции Р, Q, R имеют непрерывные частные производные и в объёме V выполняется тождество

,

то П. и. второго рода по всем поверхностям, содержащимся в V и имеющим один и тот же контур, равны между собой. В этом случае можно найти такие функции P1, Q1, R1, что

, , .

Стокса формула выражает криволинейный интеграл по замкнутому контуру через П. и. второго рода по ограниченной этим контуром поверхности.

Лит.: Никольский С. М., Курс математического анализа, т. 2, М., 1973: Ильин В. А., Позняк Э. Г., Основы математического анализа, ч. 2, М., 1973; Кудрявцев Л. Д., Математический анализ, 2 изд., т. 2, М., 1973.

ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ         
интеграл от функции, заданной на какой-либо поверхности. При некоторых условиях его можно свести к тройному интегралу (Остроградского формула).
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ         
ОПЕРАЦИЯ, ОБРАТНАЯ К ПРОИЗВОДНОЙ, - ВОЗВРАЩАЕТ КЛАСС ФУНКЦИЙ
Неопределенный интеграл
см. Интегральное исчисление.
Кратный интеграл         
  • Переход из прямоугольных координат в полярные.
  • Переход из прямоугольных координат в полярные.
  • Объем в цилиндрических координатах
  • Объем в сферических координатах
  • Геометрический смысл двойного интеграла
ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОТ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ НАД МНОГОМЕРНОЙ ОБЛАСТЬЮ
Механические приложения двойного интеграла; Механические приложения тройного интеграла; Двойной интеграл; Тройной интеграл; ∬; ∭; ⨌
В математическом анализе кратным или многократным интегралом называют множество интегралов, взятых от \ d > 1 переменных. Например:
Лебега интеграл         

одно из наиболее важных обобщений понятия Интеграла, предложенное в 1902 А. Лебегом.

Суммируемая функция         

функция, к которой приложимо введённое А. Лебегом понятие Интеграла, то есть для которой интеграл Лебега, взятый по данному множеству, конечен. Функции эти, называемые также интегрируемыми по Лебегу, необходимо должны быть измеримыми (по Лебегу). Функция с суммируемым квадратом - измеримая функция, квадрат которой есть С. ф.

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ         
  • Определённый интеграл как площадь фигуры
ОПЕРАЦИЯ ДЛЯ ФУНКЦИИ, ВОЗВРАЩАЮЩАЯ ЧИСЛО, ОБОБЩЕНИЕ СУММЫ
Определенный интеграл
см. Интегральное исчисление.
Определённый интеграл         
  • Определённый интеграл как площадь фигуры
ОПЕРАЦИЯ ДЛЯ ФУНКЦИИ, ВОЗВРАЩАЮЩАЯ ЧИСЛО, ОБОБЩЕНИЕ СУММЫ
Определенный интеграл
Определённый интеграл — одно из основных понятий математического анализа, один из видов интеграла. Определённый интеграл является числом, равным пределу сумм особого вида (интегральных сумм).
Неопределённый интеграл         
ОПЕРАЦИЯ, ОБРАТНАЯ К ПРОИЗВОДНОЙ, - ВОЗВРАЩАЕТ КЛАСС ФУНКЦИЙ
Неопределенный интеграл

общее выражение первообразной для подынтегральной функции f (x); обозначается

Например,

Определённый интеграл         
  • Определённый интеграл как площадь фигуры
ОПЕРАЦИЯ ДЛЯ ФУНКЦИИ, ВОЗВРАЩАЮЩАЯ ЧИСЛО, ОБОБЩЕНИЕ СУММЫ
Определенный интеграл

одно из основных понятий математического анализа, к которому приводится решение ряда задач геометрии, механики, физики. О. и. является числом, равным пределу сумм особого вида (интегральных сумм), соответствующих функции f (x) и отрезку [ а, b ]; обозначается . Геометрически О. и. выражает площадь "криволинейной трапеции", ограниченной отрезком [ а, b ] оси Ох, графиком функции f (x) и ординатами точек графика, имеющих абсциссы а и b. Точное определение и обобщение О. и. см. в статьях Интеграл, Интегральное исчисление.

Википедия

Поверхностные интегралы

Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.